(1+x−2x2)20=a0+a1x+a2x2+⋯+a40x40
Putting x=1, we get a0+a1+a2+a3+⋯+a40=0⋯(1)
Putting x=−1, we get a0−a1+a2−a3+⋯−a39+a40=220⋯(2)
from (1)−(2), we get 2[a1+a3+⋯+a39]=−220
⇒a1+a3+⋯+a39=−219∴k=19
(1+x+2x2)20 = a0+a1x+a2x2...................a40x40, If a0+a1+a2+a3..................a40=2a
a0−a1+a2−a3......................a40=2b. Find the value of a + b