If (1+x)n=C0+C1x+C2x2+....Cnxn, then prove that C1+2C2+3C3....+nCn=
Here the last term of C1+C2+3C3+...+nCnisnCn i.e., n
and last term with positive sign. Then n=n.1+0 or n÷n=1 Here q=1
and r=0 and the given series is (1+x)n=C0+C1x+C2x2+....Cnxn
then differentiating both sides w.r.t to x, we get
⇒n(1+x)n=C0+C1+2C2x+3C3x2....+nCnxn−1
Putting x=1, we get
n.2n−1=C1+2C2x+3C3x2....+nCnorC1+2C2x+3C3x2....+nCn=n.2n−1