If (1+x)n=n∑r=0nCr then find
(C0+C1C0)(C1+C2C1)(C3+C2C2)...............(Cn−1+CnCn)
We can be written this
(1+C1C0)(C1+C2C1)(1+C2C1)(1+C3C2).............(1+CnCn−1)
We know that
CrCr−1=nCrnCr−1=n!r!(n−r)!n!(r−1)!(n−r+1)!
CrCr−1=n!r!(n−r)!×(r−1)!(n−r+1)!n!
CrCr−1=n!r(r−1)!(n−r)!×(r−1)!(n−r+1)(n−r)!n!
CrCr−1=n−r+1r
Then,
(1+CrCr−1)=1+n−r+1r
=r+n−r+1r
=n+1r
Therefore,
(1+C1C0)(C1+C2C1)(1+C2C1)(1+C3C2).............(1+CnCn−1)
=n+11.n+12.n+13........n+1n
=(n+1)nn
Hence, it is required solution.