Given :
(1−i1+i)100=a+ib
L.H.S.=(1−i1+i)100
⇒L.H.S.=((1−i)(1+i)×(1−i)(1−i))100
⇒L.H.S.=(1+i2−2i1−i2)100
⇒L.H.S.=(−2i2)100 [∵i2=−1]
⇒L.H.S.=(−i)100=(i)100×(−1)100
⇒L.H.S.=i100
⇒L.H.S.=(i4)25
⇒L.H.S.=1 {∵i4=1}
Comparing L.H.S. and R.H.S.
∵L.H.S.=R.H.S.
1=a+ib
Comparing corresponding real and imaginary part
⇒a=1,b=0
Hence, the value of (a,b) is (1,0)