The correct option is C purely imaginary
Given that ∣∣∣z1+z2z1−z2∣∣∣=1
⇒∣∣
∣
∣
∣∣(z1z2+1)(z1z2−1)∣∣
∣
∣
∣∣=1
⇒∣∣
∣
∣∣z1z2+1z1z2−1∣∣
∣
∣∣=1
[ ∵∣∣∣z1z2∣∣∣=|z1||z2|]
⇒∣∣∣z1z2+1∣∣∣∣∣∣z1z2−1∣∣∣=1
Let z1z2=x+iy
|x+iy+1||x+iy−1|=1
⇒(x+1)2+y2=(x−1)2+y2
⇒x2+1+2x=x2+1−2x
⇒4x=0
⇒x=0
It means z1z2=iy
So, clearly z1z2 is purely imaginary