If (3−z12−z1)(2−z23−z2)=k; then points A(z1),B(z2),C(2,0) and D(3,0) will
Arg(3−z12−z1)+arg(2−z23−z2)
=arg(3−z12−z1)(2−z23−z2)
Now if (3−z12−z1)(2−z23−z2) is a +ve real
number, then its argument will be zero
So, angles θ1and θ2 are equal in magnitude but opposite in sign. So chord DC subtends equal angles at A and B. So points are concyclic for k>0