If (x+1x)=4, find the value of
(i) If (x2+1x2) and
(ii) (x4+1x4)
x+1x=4
Squaring both sides,
(i) (x+1x)2=(4)2⇒x2+1x2+2×x+1x=16⇒x2+1x2+2=16⇒x2+1x2=16−2=14∴x2+1x2=14
(ii) Again squaring both sides,
(x2+1x2)=(14)2⇒(x2)2+(1x2)2+2×x2×1x2=196⇒x4+1x4+2=196⇒x4+1x4=196−2=194∴x+1x4=196−2=194∴x4+1x4=194