If LM ∥ AB, AL=x-3, AC=2x, BM=x-2, BC=2x+3. What is value of AC?
It's given LM ∥ AB,Therefore, ALAC=CMCB
∴x−32x=x−22x+3
or(2x+3)(x−3)=(x−2)(2x)
or2x2−6x+3x−9=2x2−4x
or−3x+4x=9
orx=9
Now, AC = 2x
Therefore, AC = 2×9=18
Let (1+x+x2)2014=a0+a1x+a2x2+a3x3+....+a4028x4028 and letA=a0−a3+a6−......+a4026,B=a1−a4+a7−......−a4027,C=a2−a5+a8−......+a4028Then
AA
×A A––––––––––––
+AA×––––––––––
ABA–––––––––––