The correct option is B [3,4)
log1/2(4−x)≥log1/22−log1/2(x−1)
For log to be defined,
4−x>0 and x−1>0
⇒x∈(1,4) …(1)
Now, log1/2(4−x)≥log1/22−log1/2(x−1)
⇒−log2(4−x)≥−log22+log2(x−1)⇒log2(x−1)+log2(4−x)≤1⇒log2[(x−1)(4−x)]≤1⇒−x2+5x−4≤2⇒x2−5x+6≥0⇒x∈(−∞,2]∪[3,∞) …(2)
From (1) and (2),
x∈(1,2]∪[3,4)