If log10(2x2+7x+16)=1, then value of x is
Consider the given equation,
log10(2x2+7x+16)=1
2x2+7x+16=101
2x2+7x+16=10
2x2+7x+6=0
2x2+4x+3x+6=0
2x(x+2)+3(x+2)=0
(x+2)(2x+3)=0
When,
x+2=0
x=−2
2x+3=0
x=−32
x=−2or−32
If the circles x2+y2+2x+2ky+6=0,x2+y2+2ky+k=0 intersect orthogonally, then k is