If log2(4x+1+4)log2(4x+1)=log28, then x equals
0
log2(4x+1+4)log2(4x+1)=log28log24(4x+1) log2(4x+1)=3Let 4x+1=tlog24tlog2t=3(log24+log2t)log2t=3(2+log2t)log2t=3(log2t)2+2log2t−3=0(log2t)2−log2t+3log2t−3=0log2t(log2t−1)+3(log2t−1)=0log2t=−3 log2t=1log2(4x+1)=−3 log2(4x+1)=14x+1=18 4x+1=24x≠−78 4x=1 x=0