The correct option is D 1−log25
Given : log2(5×2x+1),log4(21−x+1),1 are in A.P.
For log to be defined,
5×2x+1>0,21−x+1>0⇒x∈R
Now,
2log4(21−x+1)=log2(5×2x+1)+1(∵2b=a+c)⇒log2(21−x+1)=log2[2(5×2x+1)]⇒21−x+1=10×2x+2
Assuming 2x=y, we get
⇒2y=10y+1⇒10y2+y−2=0⇒(5y−2)(2y+1)=0⇒y=25 (∵y=2x>0)⇒2x=25⇒x=log2(25)∴x=1−log25