If log2(5×2x+1),log4(21−x+1) and 1 are in A.P., then x equals
The given numbers are in A.P. Therfore,
2log4(21−x+1)=log2(5×2x+1)+1
⇒2log22(22x+1)=log2(5×2x+1)+log22
⇒22log22(22x+1)=log2(5×2x+1)2
⇒log22(22x+1)=log2(10×2x+2)
⇒22x+1=10×2x+2
⇒2y+1=10y+2, where 2x=y
⇒10y2+y−2=0
⇒(5y−2)(2y+1)=0
⇒y=2/5 or y=−1/2
⇒2x=2/5 or 2x=−1/2
⇒x=log2(2/5)[∵2x cannot be negatives]
⇒x=log22−log25
⇒x=1−log25