log3/4log8(x2+7)+log1/2log1/4(x2+7)−1=−2 .....(1)
Let log8(x2+7)=a
⇒x2+7=8a ....(2)
Also let log1/4(x2+7)−1=b
⇒−log1/4(x2+7)=b
⇒log4(x2+7)=b
⇒x2+7=4b ....(3)
From eqn (2) and (3), we get
8a=4b
⇒23a=22b
⇒3a=2b
⇒b=3a2
Now, by eqn (1),
log3/4a+log1/2(3a2)=−2
log3/4a+log1/2(3a)−log1/22=−2
log3/4a+log1/2(3a)+log22=−2
log3/4a+log1/2(3a)=−3 ....(4)
Now, let log3/4a=p
⇒a=(34)p ....(5)
Also, let log1/2(3a)=q
⇒3a=(12)q
⇒a=13(12)q ....(6)
So eqn (4) can be written as
p+q=−3
⇒p=−(q+3)
From eqn (5) and (6),
(34)p=13(12)q
⇒(34)−(q+3)=13(12)q
⇒23q+6=3q+2
⇒8q+2=3q+2
which is possible only when q+2=0
Hence, q=−2
⇒p=−1
So, by eqn (5)
a=43
So,by eqn (2),
x2+7=843
⇒x2+7=16
⇒x2=9
⇒x=±3