If log3(log4(log2x))=0, then the value of x is
16
8
32
2
Explanation for the correct option:
Given: log3(log4(log2x))=0
⇒log4(log2x)=30=1[∵logab=c⇒b=ac]⇒log2x=41⇒x=24⇒x=16
Hence option(A) i.e.16 is correct.