If log45=a and log56=b, then log32 is equal to
Given
log45=a⇒log5log4=a....................(1)
log56=b⇒log6log5=b....................(2)
Multiplying equation (1) and (2), we get:
log46=ab
⇒log4(3×2)=ab
⇒log22(3)+log222=ab
⇒12(log23+log22)=ab
⇒(log23+1)=2ab
⇒log23=2ab−1
⇒log32=12ab−1 ...............[since logab=x, then logba=1x]