The correct option is C (1,√2)
For the given inequality to be defined,
log1/4log4x>0,log4x>0 and x>0
⇒log4x<1,x>1 and x>0
⇒x<4 and x>1
⇒x∈(1,4) ⋯(1)
Now, log4log1/4log4x>0
⇒log1/4log4x>1
⇒log4x<14 [∵logax is strictly decreasing for a<1]
⇒x<4√4=√2 ⋯(2)
From (1) and (2),
x∈(1,√2)