wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If log5(3x4y)=3 and 3x22y=5 ,then xy is equal to

A
2(log25)21+log25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(log25)+21+log25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2(log25)+21+log25
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2(log25)+11+log25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 2(log25)+21+log25
We have, log5(3x4y)=3
log5[(3x2)2(2y)2]=3
log5[(3x22y)(3x2+2y)=3[a2b2=(ab)(a+b)]
log5[5(3x2+2y)=3[Given]
log5(5)+log5(3x2+2y)=3[log(ab)=loga+logb]
1+log5(3x2+2y)=3[loga(a)=a loga]
log5(3x2+2y)=2
log5(3x2+2y)=2log5(5)[loga(a)=a loga]
log5(3x2+2y)=log5(5)2[b log(a)=logab]
3x2+2y=25..(1)
and, 3x22y=5...(2)

Adding (1) and (2), we get
2×3x2=30
3x2=15
log3(3x2)=log3(3×5)
x2log3(3)=log3(3)+log3(5)
x2=1+log3(5)
x=2[1+log3(5)]

Subtracting (2) from (1), we get
2×2y=20
2y=10
log2(2y)=log2(2×5)
ylog2(2)=log2(2)+log2(5)
y=1+log2(5)

,xy=2[1+log3(5)]1+log2(5)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon