If log5a.logax=2, then x is equal to
5
125
25
None of these
Explanation for the correct option:
Given: log5a.logax=2
⇒logalog5·logxloga=2[∵logab=logbloga]⇒logxlog5=2⇒log5x=2[∵logab=logbloga]⇒x=52[∵logab=c⇒b=ac]⇒x=25
Hence option(C) i.e. 25 is correct.
If log5 (3x−2)=2, then x is equal to