If loge(1(1+x+x2+x3)) be expanded in a series of ascending powers of x,
the coefficient of xn is −bn if n be odd or of the form 4m+2 and an if n be of the form 4m. Find the value of a+b2.
Open in App
Solution
We have loge(11+x+x2+x3)=−loge(1+x+x2+x3) =−loge(1+x)(1+x2) =−loge((1+x)(1+ix)(1−ix)) (where i=√−1) =−loge(1+x)−loge(1+ix)−loge(1−ix) =−(x−x22+x33−...+(−1)n−1xnn+...)−(ix−(ix)22+(ix)33−...+(−1)n−1(ix)nn+...)+(ix+(ix)22+(ix)33+...+(ix)nn+...) Hence, coefficient of xn in loge(11+x+x2+x3) =−(−1)n−1n−(−1)n−1inn+inn =1n[(−1)n+(−1)nin+in]
Case 1: If n be odd then (−1)n=−1 ∴ Coefficient of xn in loge(11+x+x2+x3) =1n(−1−in+in) =−1n Now if n=4m+2 Then coefficient of xn in loge(11+x+x2+x3) =1n[(−1)n+(−1)nin+in)] =1(4m+2)[(−1)4m+2+(−1)4m+2i4m+2+i4m+2)]
=1(4m+2)[1+i2+i2]
=1(4m+2)[1−1−1]
=−1n=−bn
(since 4m+2=n) ⇒b=1
Case 2: If n=4m Then coefficient of xn in loge(11+x+x2+x3) =1n[(−1)n+(−1)nin+in)]