If ∫loglogx+1logx2dx=xfx-gx+cthen
fx=loglogx;gx=1logx
fx=logx;gx=1logx
fx=1xlogx;gx=loglogx
fx=1xlogx;gx=1logx
Explanation for correct option
Given, ∫loglogx+1logx2dx=xfx-gx+c
Let logx=z
⇒xdz=dx⇒ezdz=dx∴∫loglogx+1logx2dx=∫logz+1z2ezdz=∫ezlogzdz+∫ezz2dz
Using integration by-parts we have
⇒∫ezlogzdz+∫ezz2dz=logz∫ezdz-∫dlogzdz∫ezdzdz+∫ezz2dz=ezlogz-∫ezzdz+∫ezz2dz=ezlogz-1z∫ezdz-∫ddz1z∫ezdzdz+∫ezz2dz=ezlogz-ezz+∫ezz2dz+∫ezz2dz=ezlogz-ezz-∫ezz2dz+∫ezz2dz=ezlogz-ezz+c=xloglogx-xlogx+c∵logx=z,ez=x=xloglogx-1logx+c
Hence, option A is correct
If ∫fxdx=ψx, then ∫x5fx3dx=