The correct option is A (1−√2,0)∪(1+√2,∞)
x2−2x>0, x+1>0, & x+1≠0,1⇒x∈(−∞,0)∪(2,∞), x>−1, x≠−1,0⇒x∈(−1,0)∪(2,∞)
logba>0⇒a,b∈(0,1) or a,b∈(1,∞)
Case -1:
Let 0<x2−2x<1 and x+1∈(0,1)
⇒0<x(x−2)<1 and x∈(−1,0)
⇒x(x−2)>0 and x(x−2)<1
⇒x∈(−∞,0)∪(2,∞) and
x(x−2)<1⇒x2−2x−1<0⇒(x−1)2<2⇒x∈(1−√2,1+√2)
x∈(1−√2,0) ⋯(1)
Case -2:
x2−2x>1 and x+1>1
⇒x2−2x−1>0 and x>0
⇒x∈(1+√2,∞) ⋯(2)
From (1)&(2),
x∈(1−√2,0)∪(1+√2,∞)