If logxa, ax/2, logbx are om G.P. Then x is equal to
Given that,
logxa,x/2,logbx are in G.P.
So,
(ax/2)2=(logxa)(logbx)
ax=(loga)logx×logxlogb[∵logax=logxloga]
ax=(loga)logb
ax=logba
xlogaa=loga(logba)
x=loga(logba)
Hence, this is the answer.