Consider the given equation,
m2+m′2+2mm′cosx=1......(1)
n2+n′2+2nn′cosx=1......(2)
Part (1).
Adding both side m2cos2θ in equation (1) and Adding both side n2cos2θ in equation (2) and we get,
m2+m′2+2mm′cosx+m2cos2x=1+m2cos2x
n2+n′2+2nn′cosx+n2cos2x=1+n2cos2x
(m′+mcosx)2=1−m2sin2x......(3)
(n′+ncosx)2=1−n2sin2x......(4)
Multiplying equation (3) and (4) to and we get,
(m′+mcosx)2(n′+ncosx)2=(m′n′+m′ncosx+mn′cosx+mncos2x)2
=(m′n′+(m′n+mn′)cosx+mncos2x).......(5)
Given that,
mn+m′n′+(mn′+m′n)cosx=0
Then,
m′n′+(mn′+m′n)cosx=−mn
Put the value of equation (5) and we get,
(m′+mcosx)2(n′+ncosx)2=(m′n′+(m′n+mn′)cosx+mncos2x)2
=(−mn+mncos2x)2
=[−mn(1−cos2x)]2
=[−mnsin2x]2
(m′+mcosx)2(n′+ncosx)2=m2n2sin4x......(6)
Put the value of LHS by equation (3) and (4) to in equation (6), we get
(1−m2sin2x)(1−n2sin2x)=m2n2sin4x
⇒1−m2sin2x−n2sin2x+m2n2sin4x=m2n2sin4x
⇒1−m2sin2x−n2sin2x=0
⇒m2sin2x+n2sin2x=1
⇒sin2x(m2+n2)=1
⇒m2+n2=1sin2x
⇒m2+n2=csc2x
Hence proved
Part (2).
Similarly, we can proved it.
Hence, this is the answer.