wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If m2+m2+2mmcosx=1, n2+n2+2nncosx=1 and mn+mn+(mn+mn)cosx=0, prove that
(i) m2+n2=cosec2x
(ii) m2+n2=cosec2x

Open in App
Solution

Consider the given equation,

m2+m2+2mmcosx=1......(1)

n2+n2+2nncosx=1......(2)

Part (1).

Adding both side m2cos2θ in equation (1) and Adding both side n2cos2θ in equation (2) and we get,

m2+m2+2mmcosx+m2cos2x=1+m2cos2x

n2+n2+2nncosx+n2cos2x=1+n2cos2x

(m+mcosx)2=1m2sin2x......(3)

(n+ncosx)2=1n2sin2x......(4)

Multiplying equation (3) and (4) to and we get,

(m+mcosx)2(n+ncosx)2=(mn+mncosx+mncosx+mncos2x)2

=(mn+(mn+mn)cosx+mncos2x).......(5)

Given that,

mn+mn+(mn+mn)cosx=0

Then,

mn+(mn+mn)cosx=mn

Put the value of equation (5) and we get,

(m+mcosx)2(n+ncosx)2=(mn+(mn+mn)cosx+mncos2x)2

=(mn+mncos2x)2

=[mn(1cos2x)]2

=[mnsin2x]2

(m+mcosx)2(n+ncosx)2=m2n2sin4x......(6)

Put the value of LHS by equation (3) and (4) to in equation (6), we get

(1m2sin2x)(1n2sin2x)=m2n2sin4x

1m2sin2xn2sin2x+m2n2sin4x=m2n2sin4x

1m2sin2xn2sin2x=0

m2sin2x+n2sin2x=1

sin2x(m2+n2)=1

m2+n2=1sin2x

m2+n2=csc2x

Hence proved

Part (2).

Similarly, we can proved it.

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Intuition of Angular Momentum
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon