If m = sinAsinB find m+1m−1
tancot
m = sinAsinB
m+1m−1 = sinA+sinBsinA−sinB
= 2sin(A+B)2cos(A−B)22sin(A−B)2cos(A+B)2
= tan(A+B)2tan(A−B)2 = tan(A+B)2cot(A−B)2
If sin A = n sin B, then n−1n+1 tan A+B2 =