If m≠n then (m+n)−1 × (m−1 + n−1) = ______
mn
0
m−1n−1
m−2n−2
Given
(m+n)−1 × (m−1 + n−1),
⇒ 1m+n × (1m+1n) (∵a−m = 1am)
⇒ 1m+n × (m+nnm)
⇒ m+n(m+n)mn = 1mn = (mn)−1
⇒ (mn)−1 = m−1n−1 (∵(ab)m = am×bm)
If 2m+n2n−m=16 and 3p3n=81, a=2110, then a2m+n−p(am−2n+2p)−1=?