If cosecθ=p+qp−q(p≠q≠0), then cot(π4+θ2)| is equal to :
cosecθ=p+qp−q,sinθ=p−qp+q
cot(θ2+π4)=cot(π4)cot(θ2)−1cot(π4)+cot(θ2)
=cot(θ2)−1cot(θ2)+1.
∴sinθ=p−qp+q
∴cosθ=√1−sin2θ=√1−(p−qp+q)2=2√pqp+q
cosθ=2cos2θ2−1
cos2θ2=12(2√pq+p+qp+q)=12(√p+√q)2p+q
sin2θ2=1−12(2√pq+p+qp+q)=12(√p−√q)2p+q
cot2θ=(√p+√q)2(√p−√q)2⇒cotθ=(√p+√q)(√p−√q)
cotθ2−1cotθ2+1=√qp.