If ∣log3x∣−log3x−3<0 and the value of x lies in the integral (1√k,∞), then the value of (k)13 is
Open in App
Solution
∣log3x∣−log3x−3<0 When x≥1, log3x−log3x−3<0 ⇒−3<0 x∈[1,∞).....(1) When x<1, −log3x−log3x−3<0 ⇒−2log3x−3<0 ⇒log3x−2−3<0,[∵alogb=logba] ⇒log31x2<3 ⇒1x2<33=27 ⇒x∈(1√27,1).....(2) So, from (1) and (2), x∈(1√27,∞) ⇒k=27 ⇒k13=3.