If ∣ z−i Re(z)∣=∣ z−Im(z)∣, then z lies on
Let z=x+iy, then ∣ z−iRe(z)∣=∣ z−Im(z)∣ Implies ∣ x+iy−ix∣=∣ x+iy−y∣ ⇒ x2+(y−x)2=(x−y)2+y2 or x2=y2 or x=± y. Thus,z lies on Re(z)=± Im(z).