If (n+1)!= 90 [(n-1)!], find n.
We have, (n+1)!=90[(n−1)!] ⇒(n+1)×n×(n−1)!=90[(n−1)]! ⇒n(n+1=90) ⇒n2+n=90 ⇒n2+n−90=0 ⇒n2+10n−9n−90=0 ⇒n(n+10)−9(n+10)=0 ⇒(n−9)(n+10)=0 ⇒n−9=0 [∵n+10≠0] ⇒n=9 Hence, n = 9
If (n+1)!=90×(n−1)!, find n.
Question 90: If 2n+2−2n+1+2n=C×2n, then find C.