Consider the expansion of (x−1)n,
(x−1)n = nC0xn−nC1xn−1+nC2xn−2...+nCn(−1)n
Multiplying by x2
x2(x−1)n=nC0xn+2−nC1xn+1+nC2xn .....
On differentiating we get,
2x(x−1)n+nx2(x−1)n−1=(n+2).nC0x(n+1)−(n+1).nC1xn+....
Substitute x=2,
4+4n=(n+2).nC02n+1−(n+1).nC12n+n.nC22n−1+...
⇒4(n+1)=k(n+1)
⇒k=4.