If (n+3)! = 56 [(n-1)!] find n.
We have, (n+3)!=56[(n−1)!] ⇒(n+3)×(n+2)×(n+1)! = 56[(n+1)!] ⇒(n+2)(n+3)=56 ⇒n2+3n+2n+6=56 ⇒n2+5n+6−56=0 ⇒n2+5n−50=0 ⇒n2+10n−5n−50=0 ⇒n(n+10)−5(n+10)=0 ⇒(n+10)(n−5)=0 ⇒n−5=0 [∵n+10≠0] ⇒n−5=0 ⇒n=5
If nPr=336, nCr=56, then find n and r and hence find n−1Cr−1
If nPr = 336 and nCr = 56 find n and r.