If n+5Pn+1=11(n−1)2n+3Pn, find n.
We have,
n+5Pn+1=11(n−1)2n+3Pn⇒(n+5)![n+5−(n+1)]!=11(n−1)2×(n+3)![n+3−n]!⇒(n+5)![n+5−n−1]!=11(n−1)2×(n+3)!3!⇒(n+5)!4!=11(n−1)2×(n+3)!3!⇒(n+5)(n+4)(n+3)!4!=11(n−1)2×(n+3)!3!⇒(n+5)(n+4)4×3!=11(n−1)2×3!⇒(n+5)(n+4)=11(n−1)×42⇒(n+5)(n+4)=22(n−1)⇒n2+4n+5n+20=22n−22⇒n2+9n−22n+20+22=0⇒n2−13n+42=0⇒n2−6n−7n+42=0⇒n(n−6)−7(n−6)=0⇒n−6or,n=7
Hence, n=6 or, 7