If n be a root of the equation x2(1−ab)−x(a2+b2)−(1+ab)=0. Prove that H1−Hn=ab(a−b)
Open in App
Solution
Hn−H1=(n+1)abna+b−(n+1)ab(nb+a) =(n+1)ab[nb+a−na−b]n2ab+n(a2+b2)+ab =(n+1)ab(1−n)(a−b)n2−1 = -ab (a - b), by (1) below ∴H1−Hn=ab(a−b). Since n is a root of the given equation ∴n2(1−ab)−n(a2+b2)−(1+ab)=0 or n2−1=n2ab+n(a2+b2)+ab