If n is a positive integer then (1+i)n+(1−i)n =
Putting 1 = rcosθ,1 = rsinθ
i.e., r2 = 1 + 1 = 2,r = √2,θ = π4
(1+i)n+(1−i)n
= rn[(cosθ+isinθ)n+(cosθ+isinθ)n]
= 2rncos nθ = 2.(2)n/2cos(nπ4) = 2(n+2)2cos(nπ4)