(nP5n−1P5)=(32)((n!(n−5)!)((n−1)!(n−1−5)!))=(32)(n!(n−6)!(n−1)!(n−5)!)=(32)(n(n−1)!⋅(n−6)!(n−1)!⋅(n−5)(n−6)!)=(32)2x=3(x−5)2x=3x−15∴n=15
(i) If nP4:nP5=1:2 find n.
(ii) If n−1P3:n+1=5:12, find n.