Let
Δ=∣∣
∣
∣
∣∣abcdbcdacdabdabc∣∣
∣
∣
∣∣⇒Δ=1ω6∣∣
∣
∣
∣∣abωcω2dω3bcωdω2aω3cdωaω2bω3daωbω2cω3∣∣
∣
∣
∣∣
Multiplying R2,R3,R4 by ω,ω2,ω3 respectively
⇒Δ=1ω12∣∣
∣
∣
∣∣abωcω2dω2bωcω2dω3acω2dω3abωdω3abωcω2∣∣
∣
∣
∣∣.....{∵ω4=1}
Applying C1→C1+C2+C3+C4
⇒Δ=1(ω4)3∣∣
∣
∣
∣∣a+bω+cω2+dω3bωcω2dω3a+bω+cω2+dω3cω2dω3aa+bω+cω2+dω2dω3abωa+bω+cω2+dω3abωcω2∣∣
∣
∣
∣∣
⇒ Taking a+bω+cω2+dω3 from C1
⇒Δ=(a+bω+cω2+dω3)∣∣
∣
∣
∣∣1bωcω2dω31cω2dω3a1dω3abω1abωcω2∣∣
∣
∣
∣∣
Hence (a+bω+cω2+dω3) is a factor of Δ.
Again
Δ=(a+bi−c−di)∣∣
∣
∣
∣∣1bi−c−di1−c−dia1−diabi1abi−c∣∣
∣
∣
∣∣
Multiplying R1 and R3 by −1, we get
Δ=[(a−c)+i(b−d)]∣∣
∣
∣
∣∣−1−bicdi1−c−dia−1di−a−bi1abi−c∣∣
∣
∣
∣∣
R1→R1+R2+R3+R4
=[(a−c)+i(b−d)]∣∣
∣
∣
∣∣0P−PP1−c−dia−1di−a−bi1abi−c∣∣
∣
∣
∣∣
where P=(a−c)−i(b−d)
Δ=¯PP∣∣
∣
∣
∣∣01−111−c−dia−1di−a−bi1abi−c∣∣
∣
∣
∣∣
Applying C2→C2−C4;C3→C3+C4
=|P|2∣∣
∣
∣
∣∣00011−c−aa−dia−1di+bi−a−bibi1a+cbi−c−c∣∣
∣
∣
∣∣
Expanding w.r.t R1
=−|P|2∣∣
∣∣1−c−aa−di−1(b+d)i−a−bi1a+cbi−c∣∣
∣∣
Applying R2→R2+R1;R3→R3−R1
=−|P|2∣∣
∣
∣∣1−c−aa−di0(b+d)i−(c+a)−i(b+d)02(a+c)(b+d)i−(c+a)∣∣
∣
∣∣
Expanding w.r.t R1
=−|P|2∣∣∣(b+d)i−(c+a)−i(b+d)2(a+c)(b+d)i−(c+a)∣∣∣
=−|P|2[{(b+d)i−(c+a)}2+2i(a+c)(b+d)]
=−|P2|[−(b+d)2+(c+a)2]
=−(a+b+c+d)(a−b+c−d)[(a−c)2+(b−d)2]