wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ω is a root of x4=1, show that a+bω+cω2+dω3 is a factor of ∣ ∣ ∣ ∣abcdbcdacdabdabc∣ ∣ ∣ ∣ Hence show that the determinant is equal to (a+b+c+d)(ab+cd){(ac)2+(bd)2}

A
(a+b+c+d)(ab+cd)[(ac)2+(bd)2]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(a+b+c+d)(ab+cd)[(ac)2+(bd)2]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(a+b+c+d)(a+bcd)[(ab)2+(cd)2]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(a+b+c+d)(a+bcd)[(ab)2+(cd)2]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A (a+b+c+d)(ab+cd)[(ac)2+(bd)2]
Roots of x4=1 are 1,ω,ω2,ω3 and ω4=1;1+ω+ω2+ω3=0

Let Δ=∣ ∣ ∣ ∣abcdbcdacdabdabc∣ ∣ ∣ ∣
Δ=1ω6∣ ∣ ∣ ∣abωcω2dω3bcωdω2aω3cdωaω2bω3daωbω2cω3∣ ∣ ∣ ∣

Multiplying R2,R3,R4 by ω,ω2,ω3 respectively

Δ=1ω12∣ ∣ ∣ ∣abωcω2dω2bωcω2dω3acω2dω3abωdω3abωcω2∣ ∣ ∣ ∣.....{ω4=1}

Applying C1C1+C2+C3+C4

Δ=1(ω4)3∣ ∣ ∣ ∣a+bω+cω2+dω3bωcω2dω3a+bω+cω2+dω3cω2dω3aa+bω+cω2+dω2dω3abωa+bω+cω2+dω3abωcω2∣ ∣ ∣ ∣

Taking a+bω+cω2+dω3 from C1

Δ=(a+bω+cω2+dω3)∣ ∣ ∣ ∣1bωcω2dω31cω2dω3a1dω3abω1abωcω2∣ ∣ ∣ ∣
Hence (a+bω+cω2+dω3) is a factor of Δ.

Again

Δ=(a+bicdi)∣ ∣ ∣ ∣1bicdi1cdia1diabi1abic∣ ∣ ∣ ∣

Multiplying R1 and R3 by 1, we get
Δ=[(ac)+i(bd)]∣ ∣ ∣ ∣1bicdi1cdia1diabi1abic∣ ∣ ∣ ∣
R1R1+R2+R3+R4
=[(ac)+i(bd)]∣ ∣ ∣ ∣0PPP1cdia1diabi1abic∣ ∣ ∣ ∣
where P=(ac)i(bd)
Δ=¯PP∣ ∣ ∣ ∣01111cdia1diabi1abic∣ ∣ ∣ ∣
Applying C2C2C4;C3C3+C4
=|P|2∣ ∣ ∣ ∣00011caadia1di+biabibi1a+cbicc∣ ∣ ∣ ∣

Expanding w.r.t R1
=|P|2∣ ∣1caadi1(b+d)iabi1a+cbic∣ ∣

Applying R2R2+R1;R3R3R1
=|P|2∣ ∣ ∣1caadi0(b+d)i(c+a)i(b+d)02(a+c)(b+d)i(c+a)∣ ∣ ∣

Expanding w.r.t R1

=|P|2(b+d)i(c+a)i(b+d)2(a+c)(b+d)i(c+a)

=|P|2[{(b+d)i(c+a)}2+2i(a+c)(b+d)]

=|P2|[(b+d)2+(c+a)2]

=(a+b+c+d)(ab+cd)[(ac)2+(bd)2]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon