If P(2,−1),Q(3,4),R(−2,3) and S(−3,−2) be four points in a plane, show that PQRS is a rhombus but not a square. Find the area of the rhombus.
Open in App
Solution
The given points are P(2,-1), Q(3,4), R(-2,3) and S(-3,-2).We have
PQ=√(3−2)2+(4+1)2=√12+52=√26units
QR=√(−2−3)2+(3−4)2=√25+1=√26units
RS=√(−3+2)2+(−2−3)2=√1+25=√26units SP=√(−3−2)2+(−2−3)2=√26units PR=√(−2−2)2+(3+1)2=√16+16=4√2units and, QS=√(−3−3)2+(−2−4)2=√36+36=6√2units ∴PQ=QR=RS=SP=√26units and, PR≠QS This means that PQRS is quadrilateral whose sides are equal but diagonals are not equal.
Thus, PQRS is a rhombus but not a square.
.Now, Area of rhombus PQRS=12×(Productoflengthsofdiagonals)