If P(2n-1,n): P(2n+1,n-1)= 22:7 find n.
We have,
P(2n-1,n): P(2n+1, n-1)= 22:7
⇒P(2n−1,n)P(2n+1,n−1)=227⇒(2n−1)!(2n−1−n)!(2n+1)![2n+1−(n−1)]!=227⇒(2n−1)!×(n+2)!(n−1)!(2n+1)!=227⇒(2n−1)!×(n+2)(n+1).n.(n−1)!(n−1)!(2n+1).2n.(2n−1)!=227⇒n(n+1)(n+2)2n(2n+1)=227⇒(n+2)(n+1)2(2n+1)=227⇒n2+n+2n+24n+2=227⇒7(n2+3n+2)=22×(4n+2)⇒7n2+21n+14=88n+44⇒7n2+21n−88n+14−44=0⇒7n(n−10)+3(n−10)=0⇒7n2−70n+3n−30=0⇒7n(n−10)+3(n−10)=0⇒n=10[∵7n+3≠0]