If P(9,r)= 3024, find r.
We have, P(9,r)= 3024 ⇒1(9−r)!=3024[∵nPr=n!(n−r)!]⇒1(9−r)!=30249×8×7×6×5×4×3×2×1⇒1(9−r)!=3368×7×6×5×4×3×2×1⇒1(9−r)!=15×4×3×2×1⇒1(9−r)!=15!⇒(9−r)!=5!⇒9−r=5⇒9−5=r⇒4=r⇒r=4 Hence, r=4
If R+r=13, and R-r=7, then find R and r.
If p(11,r)= P (12, r-1) find r.