Given, P(A)=25, P(B)=310 and P(A∩B)=15
P(A∪B)=P(A)+P(B)−P(A∩B)
=25+310−15 =12
Now,
P(A′|B′)=P(A′∩B′)P(B′)
=P(A∪B)′1−P(B)
=1−P(A∪B)1−P(B)
=1−121−310
=57
Similarly,
P(B′|A′)=P(B′∩A′)P(A′)
=P(B∪A)′1−P(A)
=1−P(A∪B)1−P(A)
=1−121−25
=56
∴P(A′|B′).P(B′|A′)=57×56 =2542