If P(A)=611,P(B)=511andP(A∪B)=711, find
P(A∩B)
P(AB)
P(BA)
Given, P(A∪B)=711,P(A)=611,P(B)=511∴We know thatP(A∪B)=P(A)+P(B)−P(A∩B)⇒711=611+511−P(A∩B)⇒P(A∩B)=611+511−711=411
We know that P(AB)=P(B∩A)P(A)⇒P(BA)=411611=411×116=46=23
We know that P(BA)=P(B∩A)P(A)⇒P(BA)=411611=411×46=23[∵P(A∩B)=P(B∩A)]