pm=cosnΘ+sinΘ
p6=cos6Θ+sin6Θ
=(cos2Θ)3+(sin2Θ)3
=(cos2Θ+sin2Θ)(cos4Θ−cos2Θsin2Θ+sin4Θ)
=cos4Θ−cos2Θsin2Θ+sin4Θ−−−(1)
Pm=cos4Θ+sin4Θ−−−(2)
Now, 2p_6 -3p_4$
=2cos4Θ−2cosΘsin2Θ+2sin4Θ−3cos4Θ−3sin4Θ
=−cos4Θ−2cos2Θsin2Θ−sin4Θ
=−(cos4Θ+2cos2Θsin2Θ+sin4Θ)
=−(cos2Θ+sin2Θ)2
=−1−−−−−proved