p=r(4−r)q=p(4−p)r=q(4−q)p+q+r=r(4−r)+p(4−p)+q(4−q)⇒p+q+r=4r−r2+4p−p2+4q−q2⇒p+q+r=4(p+q+r)−(p2+q2+r2)⇒3(p+q+r)=(p2+q2+r2)⇒3(p+q+r)=(p+q+r)2−2(pq+qr+rp)Let,p+q+r=x⇒3x=x2−2(pq+qr+rp)⇒x2−3x−2(pq+qr+rp)=0
which is quadratic
Minimum value is given by −b2a=−(−3)2(1)=32