Let A=first term of the A.P
and
d=common difference of the A.P
Now,
a=A+(p−1)d.............(1)
b=A+(q−1)d.............(2)
c=A+(r−1)d.............(3)
Subtracting (2) from (1),(3) from (2) and (1) from (3) we get
a−b=(p−q)d.............(4)
b−c=(q−r)d.............(5)
c−a=(r−p)d.............(6)
Multiply (4),(5),(6) by c,a,b respectively we have
c(a−b)=c(p−q)d.........(7)
a(b−c)=a(q−r)d.........(8)
b(c−a)=b(r−p)d.........(9)
Now,
a(q−r)d+b(r−p)d+c(p−q)d=[a(q−r)+b(r−p)+c(p−q)]d=0
Now since d is common difference it should be non zero
Hence,
a(q−r)+b(r−p)+c(p−q)=0