Given,
ap=a+(p−1)d
aq=a+(q−1)d
ar=a+(r−1)d
as=a+(s−1)d
ap,aq,ar,as are in G.P
⇒aqap=asar
consider,
aqap=araq
subtracting 1 on both sides, we get,
aqap−1=araq−1
aq−apar−aq=apaq
a+(q−1)d−[a+(p−1)d]a+(r−1)d−[a+(q−1)d]=apaq
q−rp−q=apaq............(1)
now consider,
araq=asar
subtracting 1 on both sides, we get,
araq−1=asar−1
ar−asaq−ar=araq
a+(r−1)d−[a+(s−1)d]a+(q−1)d−[a+(r−1)d]=araq
r−sq−r=araq
From (1)
r−sq−r=aqap............(2)
From (1) and (2), we have,
apaq=aqap
Therefore (p−q),(q−r),(r−s) are in G.P