Step 1. Using given data.
Let assume first term is a and common difference is d.
pth term of A.P.=ap=a+(p−1)d
qth term of A.P.=aq=a+(q−1)d
rth term of A.P.=ar=a+(r−1)d
sth term of A.P.=as=a+(s−1)d
It is given that ap,aq,ar & as are in G.P.
So, their common ratio is same
aqap=araq=asar ....(i)
Step 2. Simplifies.
aqap=araq=asar from (i)
Now solving,
aqap=araq
Subtracting 1 both sides,
aqap−1=araq−1
⇒(aq−ap)ap=(ar−aq)aq
⇒(aq−ap)(ar−aq)=apaq....(ii)
aqap=araq=asar....(i)
(aq−ap)(ar−aq)=apaq....(ii)
Again
araq−1=asar−1
⇒(ar−aq)aq=(as−ar)ar
⇒(as−ar)(ar−aq)=araq
⇒(ar−as)(aq−ar)=araq ...(iii)
aqap=araq=asar...(i)
(aq−ap)(ar−aq)=apaq....(ii)
(ar−as)(aq−ar)=araq...(iii)
Step 3. Solve tp prove (p−q),(q−r),(r−s) are in G.P
Substitute values of ap,aq & ar in (ii)
⇒a+(q−1)d−[a+(p−1)d]a+(r−1)d−[a+(q−1)d]=apaq
⇒a−a+(q−1)d−(p−1)d]a−a+(r−1)d−(q−1)d]=apaq
⇒d[q−1)−(p−1)]d[(r−1)−(q−1)]=apaq
⇒q−1−p+1r−1−q+1=apaq
⇒q−pr−q=apaq
aqap=araq=asar...(i)
(ar−as)(aq−ar)=araq....(iii)
q−pr−q=apaq
⇒r−qq−p=aqap
⇒−(q−r)−(p−q)=aqap
⇒(q−r)(p−q)=aqap ...(iv)
Again putting values aq,ar & as in (iii)
a+(r−1)d−[a+(s−1)d]a+(q−1)d−[a+(r−1)d]=araq
⇒a−a+(r−1)d−(s−1)da−a+(q−1)d−(r−1)d=araq
⇒d[(r−1)−(s−1)]d[(q−1)−(r−1)]=araq
⇒r−1−s+1q−1−r+1=araq
⇒r−sq−r=araq...(v) {from(i)}
From (iv) and (v)
(q−r)(p−q)=r−sq−r
∵common ratio for (p−q),(q−r),(r−s) is same i.e, (q−r)(p−q)=r−sq−r
∴(p−q),(q−r),(r−s) are in G.P.