p * ap = q * aq
p{ a + (p-1) d } = q { a + ( q - 1 ) d }
ap + p2d - pd = aq + q2d - qd
ap - aq = - p2d + q2d - qd + pd
a (p - q ) = d ( q2 - p2 + p - q )
a ( p - q ) = d { ( q - p ) ( q + p) + p - q }
a ( p - q ) = d ( p - q ) { -1 ( p + q) + 1 }
a = d ( - p - q + 1 ) .... ( 1)
( p + q ) th term = a + (n - 1 ) d
here , n = no. of terms
= a + ( p + q - 1 ) d = o .. (2)
substituting a = d ( - p - q + 1 ) in ( 2 )
= d ( - q - p + 1 ) + ( p + q - 1 ) d
= -dp - dq + d + pd + qd - d
=0