If P=x3−1x3 and Q=x−1x,x∈(0,x) then minimum value value of PQ is
We have,
If P=x3−1x3 and Q=x−1x
Then,
PQ=x3−1x3(x−1x)
PQ=(x−1x)(x2+1x2+x×1x)(x−1x)
PQ=x2+1x2+1.......(1)
Let, PQ=y
Then,
y=x2+1x2+1
dydx=2x−2x3
For, maxima and minima
dydx=0
2x−2x3=0
2x3=2x
x4=1
x=1
Again differentiation and we get,
d2ydx2=2+23x4
d2ydx2=2+6x4
Put x=1 and we get,
d2ydx2=2+61=8
Since, d2ydx2>0
Hence, at x=1, y=PQ is minimum
Put x=1 equation (1) and we get,
PQ=1+1+1=3 is minimum value.
Hence, this is the answer.