The correct option is C atleast two real roots
P(x)=ax2+bx+c
Hence, for real roots,
b2−4ac≥0
Q(x)=−ax2+dx+c
Hence, for real roots,
d2+4ac≥0
Now,
ac≠0
Now if ac<0
Then,
b2−4ac>0
Hence, P(x).Q(x) has atleast 2 real roots .
If ac>0
Then
d2+4ac>0
Hence, P(x).Q(x) has atleast 2 real roots .